Search results for "Lebesgue–Stieltjes integration"

showing 3 items of 3 documents

Generalized Lebesgue points for Sobolev functions

2017

In this article, we show that a function $f\in M^{s,p}(X),$ $0<s\leq 1,$ $0<p<1,$ where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal{H}^h$-Hausdorff measure zero for a suitable gauge function $h.$

Discrete mathematicsDominated convergence theoremmedian010102 general mathematicsLebesgue's number lemmaRiemann integralSobolev spaceLebesgue integration01 natural sciencesLebesgue–Stieltjes integrationFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicssymbols.namesakemetric measure spaceDifferentiation of integralsSquare-integrable function46E35 28A78FOS: MathematicssymbolsLocally integrable function0101 mathematicsgeneralized Lebesgue pointMathematicsCzechoslovak Mathematical Journal
researchProduct

On a normal form of symmetric maps of [0, 1]

1980

A class of continuous symmetric mappings of [0, 1] into itself is considered leaving invariant a measure absolutely continuous with respect to the Lebesgue measure.

Discrete mathematicsPure mathematicsLebesgue measureLebesgue's number lemmaStatistical and Nonlinear Physics58F20Absolute continuityLebesgue integrationLebesgue–Stieltjes integrationsymbols.namesakeNonlinear system28D05symbolsInvariant (mathematics)Borel measureMathematical PhysicsMathematicsCommunications in Mathematical Physics
researchProduct

A Constructive Minimal Integral which Includes Lebesgue Integrable Functions and Derivatives

2000

In this paper we provide a minimal constructive integration process of Riemann type which includes the Lebesgue integral and also integrates the derivatives of differentiable functions. We provide a new solution to the classical problem of recovering a function from its derivative by integration, which, unlike the solution provided by Denjoy, Perron and many others, does not possess the generality which is not needed for this purpose.The descriptive version of the problem was treated by A. M. Bruckner, R. J. Fleissner and J. Foran in [2]. Their approach was based on the trivial observation that for the required minimal integral, a function F is the indefinite integral of f if and only if F'…

Discrete mathematicssymbols.namesakeDifferentiation of integralsGeneral MathematicssymbolsRiemann–Stieltjes integralLocally integrable functionRiemann integralDaniell integralDifferentiable functionLebesgue integrationLebesgue–Stieltjes integrationMathematicsJournal of the London Mathematical Society
researchProduct